77
reduces the drought tolerance in Arabidopsis by increasing leaf
stomatal density[J]. Journal of Plant Physiology, 2022, 275:153741.
DOI:10.1016/j.jplph.2022.153741.
[44] WANG D, CHEN Q, CHEN W, LIU X, XIA Y, GUO Q, JING D,
LIANG G. A WRKY transcription factor, EjWRKY17, from Eriobotrya
japonica enhances drought tolerance in transgenic Arabidopsis[J].
International Journal of Molecular Sciences, 2021, 22(11):5593.
DOI:10.3390/ijms22115593.
[45] SHAN D, WANG C, SONG H, BAI Y, ZHANG H, HU Z, WANG L,
SHI K, ZHENG X, YAN T, SUN Y, ZHU Y, ZHANG T, ZHOU Z, GUO
Y, KONG J. The MdMEK2-MdMPK6-MdWRKY17 pathway stabilizes
chlorophyll levels by directly regulating MdSUFB in apple under
drought stress[J]. Plant Journal, 2021, 108(3):814–828. DOI10.1111/
tpj.15480.
[46] HAN D, ZHANG Z, DING H, WANG Y, LIU W, LI H, YANG
G. Molecular cloning and functional analysis of MbWRKY3
involved in improved drought tolerance in transformed tobacco
[J]. Journal of Plant Interactions, 2018, 13:1, 329–337. DOI:
10.1080/17429145.2018.1478994.
[47] GONG X, ZHANG J, HU J, WANG W, WU H, ZHANG Q, LIU J H.
FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in
drought tolerance and modulates putrescine synthesis by regulating
arginine decarboxylase gene[J]. Plant and Cell Environment, 2015,
38(11):2248–2262. DOI:10.1111/pce.12539.
[48] JAFFAR M A, SONG A, FAHEEM M, CHEN S, JIANG J, LIU C,
FAN Q, CHEN F. Involvement of CmWRKY10 in drought tolerance
of chrysanthemum through the ABA-signaling pathway[J].
International Journal of Molecular Sciences, 2016, 17(5):693.
DOI:10.3390/ijms17050693.
[49] 谢颖悦,王琦,王春平,周冰玉,周宇,刘芬,孙翔宇 . 植物响应盐
胁迫的机制研究进展[J]. 激光生物学报,2022, 31(05):398–403.
DOI:10.3969/j.issn.1007-7146.2022.05.003.
XIE Y Y, WANG Q, WANG C P, ZHOU B Y, ZHOU Y, LIU F, SUN X
Y. Progress of studies on the mechanism of plant response to salt stress
[J]. Acta Laser Biology Sinica, 2022, 31(5):398–403. DOI:10.3969/
j.issn.1007-7146.2022.05.003.
[50] LIN J, DANG F, CHEN Y, GUAN D, HE S. CaWRKY27 negatively
regulates salt and osmotic stress responses in pepper[J]. Plant
Physiology and Biochemistry, 2019, 145:43–51. DOI:10.1016/
j.plaphy.2019.08.013.
[51] WANG H, LI Z, REN H, ZHANG C, XIAO D, LI Y, HOU X, LIU T.
Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt
tolerance in non-heading Chinese cabbage [Brassica campestris (syn.
Brassica rapa) ssp. chinensis][J]. Horticulture Research, 2022,
9:113. DOI:10.1093/hr/uhac113.
[52] SINGH D, DEBNATH P, SANE A P, SANE V A. Tomato (Solanum
lycopersicum) WRKY23 enhances salt and osmotic stress tolerance by
modulating the ethylene and auxin pathways in transgenic Arabidopsis
[J]. Plant Physiology and Biochemistry, 2023, 195:330–340.
DOI:10.1016/j.plaphy.2023.01.002.
[53] SU M, WANG S, LIU W, YANG M, ZHANG Z, WANG N, CHEN X.
Interaction between MdWRKY55 and MdNAC17-L enhances salt
tolerance in apple by activating MdNHX1 expression[J]. Plant
Science, 2022, 320:111282. DOI:10.1016/j.plantsci.2022.111282.
[54] MA Y, XUE H, ZHANG F, JIANG Q, YANG S, YUE P, WANG F,
ZHANG Y, LI L, HE P, ZHANG Z. The miR156/SPL module regulates
apple salt stress tolerance by activating MdWRKY100 expression[J].
Plant Biotechnology Journal, 2021, 19(2):311–323. DOI:10.1111/
pbi.13464.
[55] DONG Q, ZHENG W, DUAN D, HUANG D, WANG Q, LIU C, LI
C, GONG X, LI C, MAO K, MA F. MdWRKY30, a group IIa WRKY
gene from apple, confers tolerance to salinity and osmotic stresses in
transgenic apple callus and Arabidopsis seedlings[J]. Plant Science,
2020, 299:110611. DOI:10.1016/j.plantsci.2020.110611.
[56] HE L , W U Y H, ZHAO Q, WANG B, L IU Q L , ZHANG L .
Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in
transgenic chrysanthemum[J]. International Journal of Molecular
Sciences, 2018, 19(7):2062. DOI:10.3390/ijms19072062.
[57] WANG K, WU Y H, TIAN X Q, BAI Z Y, LIANG Q Y, LIU Q L, PAN Y
Z, ZHANG L, JIANG B B. Overexpression of DgWRKY4 enhances salt
tolerance in chrysanthemum seedlings[J]. Frontiers in Plant Science,
2017, 8:1592. DOI:10.3389/fpls.2017.01592.
[58] LIANG Q Y, WU Y H, WANG K, BAI Z Y, LIU Q L, PAN Y Z, ZHANG
L, JIANG B B. Chrysanthemum WRKY gene DgWRKY5 enhances
tolerance to salt stress in transgenic chrysanthemum[J]. Scientific
Reports, 2017, 7(1):4799. DOI:10.1038/s41598-017-05170-x.
[59] LI P, SONG A, GAO C, WANG L, WANG Y, SUN J, JIANG J, CHEN
F, CHEN S. Chrysanthemum WRKY gene CmWRKY17 negatively
regulates salt stress tolerance in transgenic chrysanthemum and
Arabidopsis plants[J]. Plant Cell Reports, 2015, 34(8):1365–1378.
DOI:10.1007/s00299-015-1793-x.
[60] ZHANG Y, YU H, YANG X, LI Q, LING J, WANG H, GU X, HUANG S,
JIANG W. CsWRKY46, a WRKY transcription factor from cucumber,
confers cold resistance in transgenic-plant by regulating a set of coldstress responsive genes in an ABA-dependent manner[J]. Plant
Physiology and Biochemistry, 2016, 108:478–487. DOI:10.1016/
j.plaphy.2016.08.013.
[61] LIU W, LIANG X, CAI W, WANG H, LIU X, CHENG L, SONG P,
LUO G, HAN D. Isolation and functional analysis of VvWRKY28,
a Vitis vinifera WRKY transcription factor gene, with functions in
tolerance to cold and salt stress in transgenic Arabidopsis thaliana[J].
International Journal of Molecular Sciences, 2022, 23(21):13418.
DOI:10.3390/ijms232113418.
[62] DANG F, LIN J, XUE B, CHEN Y, GUAN D, WANG Y, HE S.
CaWRKY27 negatively regulates H2
O2
-mediated thermotolerance in
pepper (Capsicum annuum)[J]. Frontiers in Plant Science, 2018,
9:1633. DOI:10.3389/fpls.2018.01633.
[63] WU Z, LI T, CAO X, ZHANG D, TENG N. Lily WRKY factor
LlWRKY22 promotes thermotolerance through autoactivation and
activation of LlDREB2B[J]. Horticulture Research, 2022, 9:186.
DOI:10.1093/hr/uhac186.
[64] DING L, WU Z, TENG R, XU S, CAO X, YUAN G, ZHANG D, TENG N.
LlWRKY39 is involved in thermotolerance by activating LlMBF1c and
interacting with LlCaM3 in lily (Lilium longifl orum)[J]. Horticulture
Research, 2021, 8(1):36. DOI:10.1038/s41438-021-00473-7.
[65] YUE M, JIANG L, ZHANG N, ZHANG L, LIU Y, WANG Y, LI M,
LIN Y, ZHANG Y, ZHANG Y, LUO Y, WANG X, CHEN Q, TANG H.
Importance of FaWRKY71 in strawberry (Fragaria×ananassa) fruit